Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context

نویسندگان

  • Jesús Espada
  • Hector Peinado
  • Lidia Lopez-Serra
  • Fernando Setién
  • Paula Lopez-Serra
  • Anna Portela
  • Jaime Renart
  • Elisa Carrasco
  • María Calvo
  • Angeles Juarranz
  • Amparo Cano
  • Manel Esteller
چکیده

Mammalian DNA methyltransferase 1 (DNMT1) is essential for maintaining DNA methylation patterns after cell division. Disruption of DNMT1 catalytic activity results in whole genome cytosine demethylation of CpG dinucleotides, promoting severe dysfunctions in somatic cells and during embryonic development. While these observations indicate that DNMT1-dependent DNA methylation is required for proper cell function, the possibility that DNMT1 has a role independent of its catalytic activity is a matter of controversy. Here, we provide evidence that DNMT1 can support cell functions that do not require the C-terminal catalytic domain. We report that PCNA and DMAP1 domains in the N-terminal region of DNMT1 are sufficient to modulate E-cadherin expression in the absence of noticeable changes in DNA methylation patterns in the gene promoters involved. Changes in E-cadherin expression are directly associated with regulation of β-catenin-dependent transcription. Present evidence suggests that the DNMT1 acts on E-cadherin expression through its direct interaction with the E-cadherin transcriptional repressor SNAIL1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-11: N-a-acetyltransferase 10 Protein Regulates DNA Methylation and Embryonic Development

Background Genomic imprinting is a heritable and developmentally essential phenomenon by which gene expression occurs in an allele-specific manner1. While the imprinted alleles are primarily silenced by DNA methylation, it remains largely unknown how methylation is targeted to imprinting control region (ICR), also called differentially methylated region (DMR), and maintained. Here we show that ...

متن کامل

E-cadherin Promoter Methylation Comparison and Correlation with the Pathological Features of the Squamous Cell Carcinoma of Esophagus in the High Risk Region

E-cadherin is among tumor suppressor genes which mostly subjects to the down-regulation in squamous cell carcinoma of esophagus (SCCE). The gene is tightly associated with the tumor invasion and metastasis in multiple human cancers, especially SCCE. CpG islands’ methylation in the promoter region of E-cadherin is among the mechanisms that have been suggested for the E-cadherin silencing, howeve...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. M...

متن کامل

Hypermethylation of E-Cadherin and Estro-gen Receptor- Gene Promoter and Its Association with Clinicopathological Features of Breast Cancer in Iranian Patients

Background: Aberrant methylation of cytosine-guanine dinucleotide islands leads to inactivation of tumor suppressor genes in breast cancer. Tumor suppressor genes are unmethylated in normal tissue and often become hypermethylated during tumor formation, leading to gene silencing. We investigated the association between E-cadherin (CDH1) and estrogen receptor-α (ESRα) gene promoter methylation a...

متن کامل

Gene Expression and Promoter Methylation Status of VHL, Runx-3, E-cadherin, P15 and P16 Genes During EPO-Mediated Erythroid Differentiation of CD34+ Hematopoietic Stem Cells

Background: VHL (von Hippel-Lindau), Runx-3 (Runt-related transcription factor 3), E-cadherin (Epithelial cadherin), P15 (INK4a, cyclin dependent kinase inhibitor), and P16 (INK4b) genes are essential in hematopoiesis. The aim of this study was to explore the correlation between gene expression and promoter methylation in CD34+ stem cells before and after differentiation to erythroid lineage. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2011